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Relevance of percolation theory to the vulcanization transition
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The relationship between vulcanization and percolation is explored from the perspective of renormalized
local field theory. We show to arbitrary order in perturbation theory that the vulcanization and percolation
correlation functions are governed by the same Gell-Mann–Low renormalization-group equation. Hence, all
scaling aspects of the vulcanization transition are reigned by the critical exponents of the percolation univer-
sality class.
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I. INTRODUCTION

Vulcanization @1# has a vast array of technological an
commercial applications. The vulcanization process tra
forms a macromolecular liquid into an amorphous solid
randomly introducing permanent~chemical! crosslinks. In
the liquid state all macromolecules are delocalized. In
amorphous solid state a nonzero fraction of macromolec
forms a macroscopic network. The constituents of this n
work are localized at random positions about which th
execute thermal motion characterized by a distribution
finite localization lengths. The vulcanization transition~VT!
between the two states~occurring at a critical density o
crosslinks! represents a continuous phase transition.

Due to the work of Goldbart, Zippelius, and coworke
~GZ! @2# a rather comprehensive theoretical description
the VT exists to date on the level of a mean-field appro
mation. The mean-field theory gave a first glance on
relation between the VT and the percolation transition, a
the critical exponents describing the VT were shown to
consistent with the mean-field critical exponents for perco
tion. Penget al. @3# introduced a minimal model for the VT
and discussed it under the aspects of universality as a c
mon theoretical formulation of general amorphous solidifi
tion transitions~of which the VT is a prime example!. Re-
cently, Peng and Goldbart~PG! @4# carried out a
renormalization-group-improved one-loop calculation ba
on the minimal model@3#. Their calculation showed that th
critical exponents of vulcanization and percolation are
conformity to one-loop level.

In the past, the VT has often been addressed directly f
the perspective of percolation theories@5#. In contrast to the
work of GZ, this perspective takes into account only a sin
ensemble of random connections, and therefore does no
corporate the effects of both quenched randomness and
mal fluctuations. Given that an essential aspect of the V
the impact of the quenched random constraints on the t
mal motion of the constituents, thea priori identification of
the VT with percolation is a nontrivial matter and one m
ask: What is the relevance of percolation theory to the V

The purpose of this paper here is to explore the conn
tion between vulcanization and percolation in depth.
compare the minimal model@3# to a field theoretic model for
the random resistor network~RRN! that we recently studied
@6#. Such a RRN is nothing more than a percolation mo
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where randomly occupied bonds are assigned a finite n
zero conductance. In contrast to PG, which implemen
‘‘momentum shell’’ renormalization group, we use the pow
erful methods of renormalized local field theory. The m
mentum shell procedure, although physically intuitive, mix
scaling properties with features of other universal quanti
like scaling functions. Therefore, it is extremely difficult t
extend the procedure beyond first order in perturbat
theory. Renormalized field theory goes in the other directi
Instead of the elimination of fluctuating degrees of freed
near the upper momentum cutoff and a rescaling of the m
menta, the momentum cutoff is send to infinity at the beg
ning. The ultraviolet~UV! infinities resulting from this lim-
iting procedure are eliminated by the so-call
renormalization factors. These renormalization factors th
determine the Gell-Mann–Low renormalization-group equ
tion ~RGE! that encodes all the scaling properties of t
theory. This RGE represents the cleanest way to analyze
full scaling structure and its critical exponents. Physic
properties beyond the scaling structure, however, canno
inferred from the RGE. Indeed, these are, in general disti
for vulcanization and percolation. A further advantage
renormalized field theory is that it allows to find out gene
properties of the renormalization factors~and hence, the
RGE! to all orders of perturbation theory because they res
solely from so-called superficially divergent Feynman d
grams. Our analysis presented in this paper thrives on
advantage. We show to arbitrary order in perturbation the
that vulcanization and percolation involve the same primit
divergences, and hence, are governed by the same RGE.
establishes an exact relation between the critical expon
of the VT and the percolation transition provided that cert
additional mild, and generally accepted, assumptions
hold,viz. that the correlation functions solving the RGE ha
a nonsingular and nonvanishing limit as the infrared sta
fixed point is approached. Furthermore, we exemplify d
tinctions between the VT and the percolation transition
comparing the order parameters of both theories.

II. MODELING VULCANIZATION AND PERCOLATION

The theory of GZ and PG is based on the order-param
field
©2001 The American Physical Society19-1
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V~ r̂ !5E
k̂
Ṽ~ k̂!eik̂• r̂ , ~1!

defined on the replicatedd-dimensional real space with co
ordinates r̂ 5(r1 , . . . ,rn). The corresponding replicate
wave vectors arek̂5(k1 , . . . ,kn). Note that ourn corre-
sponds to (n11) in the theory by GZ. The replica limitn
→1 has to be taken before any other limit. The volumeV of
the real space is considered as being finite. Thus,k̂ is a
discrete vector.* k̂••• is an abbreviation for( k̂•••, which is
in the infinite volume limit equivalent to (2p)2nd*dndk̂•••.
Microscopically, the order parameter is an-fold correlation
function of density fluctuations and characterizes the am
phous state. The fluctuations about the average density th
self represent a noncritical stochastic variable that is
cluded by the constraints

Va~r (a)!5E )
bÞa

ddr (b)V~ r̂ !50, a51, . . . ,n. ~2!

Hence,Ṽ( k̂) is only nonzero ifk̂ belongs to the ‘‘higher
replica sector’’~HRS!, that means if at least two distinc
wave vectorsk(a),k(b) of k̂ are nonzero. The minimal mode
for the vulcanization transition@3# is defined by

HVT5E dndr̂ H t

2
V~ r̂ !21

1

2
@¹̂V~ r̂ !#22

g

6
V~ r̂ !3J , ~3!

wheret2tc measures the distance to the critical crossl
density attc . In a mean-field approximation,t is positive in
the liquid phase and the VT occurs att5tc50. By virtue of
the usual identification ofV( r̂ ) with the microscopic density
correlation,g is a positive coupling constant. The Ham
tonianHVT is complete in the renormalization group sen
i.e., it contains all relevant couplings and neglects all irr
evant ones.

We are going to compare the perturbation theory based
the minimal modelHVT to the perturbation theory of th
field-theoretic model for the RRN@6–8#. This field-theoretic
model is based on an order-parameter fieldw(x,uW ) that lives
on thed-dimensional real space with the coordinatesx. The
variableuW denotes theD-fold replicated voltage at positionx.
For regularization purposes,uW 5nW Du takes discrete value
on aD-dimensional torus, the replica space, i.e.,nW is chosen
to be aD-dimensional vector with integer componentsn (a)

satisfying 2M,n (a)<M and n (a)5n (a) mod(2M ). The
order-parameter field is restricted by the condition

(
uW

w~x,uW !50. ~4!

It follows that the replica space Fourier transformw̃(x,lW ) of
the order-parameter field, defined by w(x,uW )
5(2M )2D(lW w̃(x,lW )exp(ilW•uW), satisfies w̃(x,lW 50W )50.
Without exception, we study the limitD→0, M→` of the
replica space with (2M )D→1 andDu5u0 /AM→0. Here,
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u0 is a constant that sets the width of the voltage inter
such that@2u0AM,u (a)<u0AM #. In the limit D→0, M
→`, the constantu0 plays the role of a redundant scalin
parameter, i.e., the theory is independent of its value. In
following, we write (uW•••'(Du)D(uW•••'*dDu . . .
5..*uW . . . , where the approximations become exact in t
limit studied.

The field-theoretic Hamiltonian for the RRN reads

HRRN5E ddxE
uW
H t

2
w~x,uW !21

1

2
@¹w~x,uW !#2

1
w

2
@¹uw~x,uW !#22

g

6
w~x,uW !3J . ~5!

The parametert2tc;(pc2p) specifies the deviation of the
occupation probabilityp from the critical probabilitypc . In
mean-field theory the percolation transition happens at
5tc50. w is proportional to the resistance of the individu
random bonds.

In the percolating phase,t,tc , the mean order paramete
is given by

^w̃~x,lW !&HRRN
5K expS 2

lW 2

4
R`~x! D L

C

5K x`~x!expS 2
lW 2

4
R`~x! D L

C

5P`K expS 2
lW 2

4
R`~x! D L

C

8
. ~6!

Here,R`(x) is the ~random! resistance between an arbitra
point x and infinity.x`(x) is an indicator function that is one
if x is connected to infinity, i.e., ifx belongs to a percolating
infinite cluster, and zero otherwise.^•••&C denotes the dis-
order average over all configurations of the diluted latti
^•••&C8 stands for disorder averaging conditional to the co
straint thatx belongs to an infinite cluster. Note thatP`

5^x`(x)&C is the percolation probability, i.e., the order p
rameter for usual~purely geometric! percolation.

HRRN reduces forw→0 to the Hamiltonian for then
5(2M )D-state Potts model withn→1 for D→0. This is
important because the Potts model is known to describe
colation in this limit@9#. The connection betweenHRRN and
the Potts Hamiltonian becomes evident by relabeling thn

fieldsw by an indexa51, . . . ,n: w(x,uW )→wa(x). The con-
straint ~4! then reads(awa(x)50. Taking the usual base
ei

(a) , i 51, . . . ,n21, with (aei
(a)50, (aei

(a)ej
(a)5d i , j ,

( iei
(a)ei

(b)5da,b21/n, and upon defining (n21) indepen-
dent fields s by wa(x)5( iei

(a)si(x), we get the Potts-
Hamiltonian in the form
9-2
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RELEVANCE OF PERCOLATION THEORY TO THE . . . PHYSICAL REVIEW E 64 026119
HPotts5E ddxH(
i

F t

2
si~x!21

1

2
@¹si~x!#2G

2
g

6 (
i , j ,k

l i jksi~x!sj~x!sk~x!J , ~7!

wherel i jk5(aei
(a)ej

(a)ek
(a) is the usual ‘‘Potts tensor.’’ Note

that the introduction of the finite bond resistancewÞ0 re-
duces the Potts symmetry, i.e., the full permutation symm
of the n fields s belonging to the basic representation of t
symmetry groupSn , to translation and rotation symmetry i
the D-dimensional replica space.

III. RENORMALIZATION AND SCALING

We proceed with a renormalization group analysis of
VT by employing standard methods of renormalized-fie
theory @10#. The principal diagrammatic elements are eas
gathered fromHVT . First, we have the three-leg vertexg.
Because the corresponding interaction is cubic,dc56 is
found to be the upper critical dimension of the VT. Second
follows from the quadratic part ofHVT that the principal
Gaussian propagator is given by

Gbold~ k̂!5G~ k̂!H 12 (
a51

n

d k̂,k(a)ê(a)1~n21!d k̂,0̂J , ~8!

where G( k̂)5(t1 k̂2)21. ê(a) is a n-dimensional vector
whoseath component is one and all other components
zero. Accordingly,k(a)5 k̂•ê(a) is the component ofk̂ con-
taining replicaa. The part ofGbold( k̂) embraced by the curly
brackets ensures the constraintk̂PHRS. Equation~8! can be
interpreted so thatGbold( k̂) decomposes into three gener
parts one of which is proportional to (n21) and hence, can
be discarded from the onset. We call the remaining propa
tors Gam( k̂)5G( k̂) and Gliq @k(a)#5G( k̂)d k̂,k(a)ê(a) amor-
phous and liquid propagators, respectively, because the
fields enteringGam( k̂) are capable of diagnosing amorpho
solidification in contrast to 1RS fields constituting th
Gliq @k(a)#. Moreover, we refer toGliq @k(a)# as having color
a. Due to the propagator decomposition each principal d
gram decomposes into a sum of amorphous diagrams
sisting of amorphous and liquid propagators. Note that s
an amorphous diagram may feature liquid propagators of
one or of several colors.

Now we are in the position to address the renormalizat
of the VT Hamiltonian. For this task, it is sufficient to con
sider those Feynman diagrams contributing to the sup
cially divergent vertex functions forn→1. Thus, we restrict
ourselves to one-particle irreducible diagrams with two
three amputated external legs. In the following, we den
generic diagrams of this type byD2(K̂) and D3($K̂%), re-
spectively.K̂ stands for an external wave vector and$K̂% is
an abbreviation for$K̂1 ,K̂2 ,K̂352K̂12K̂2%. Once the de-
composition of the bold diagrams into amorphous diagra
has been accomplished~i.e., the constraintk̂PHRS is imple-
02611
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mented! it is safe to take the continuum limit ink̂ space.
Then we extract the divergences of these diagrams by
panding in a Taylor series in the external wave vecto
D2(K̂)5D2(0̂)1D28(0̂)K̂2 and D3($K̂%)5D3($0̂%), where
higher-order terms are discarded since they are superfic
convergent.

In the following, we use without exception dimension
regularization. Thus, UV divergencies appear as poles in
deviation«562d from dc . These poles are eliminated from
superficially divergent vertex functions by using the ren
malization scheme

V→V° 5Z1/2V, t→t°5t°c1Z21Ztt,

g2→g° 25A«Z23/2Zuum«, ~9!

whereA« is a suitably chosen amplitude,m21 is a conve-
nient length scale, andu is a dimensionless version of th
coupling constant. In the minimal renormalization procedu
i.e., dimensional regularization in conjunction with minim

subtraction,t°c is zero and the« poles are eliminated byZ
factors of the form

Z . . . 511 (
m51

` Y . . .
(m) ~u!

«m
. ~10!

The Y . . .
(m) (u) are expansions in the coupling constantu be-

ginning with the powerum. A central theorem of renormal
ization theory, cf. Ref.@10#, ensures that this procedure
suitable to eliminate the UV divergencies from any vert
function order by order in perturbation theory. TheY . . .

(1) (u)
resulting from the primitive divergences determine the RG
entirely.

First, we analyzeDl($0̂%), l being any positive integer
under the assumption that it contains, apart from amorph
propagators, liquid propagators of just a single color, saya.
Obviously, there aren different realizations of the generi
type represented byDl($0̂%) corresponding to then different
colors the liquid propagators can have. The sum over
these realizations appears in the decomposition of the
taining bold diagram. However, all these realizations sy
bolize equivalent mathematical expressions since the inte
wave vectors labeled by the colors are merely integrat
variables. Hence, the overall contribution of this generic ty
to the primitive divergence of its bold diagram is

(
a51

n

Dl~$0̂%!5nDl~$0̂%! →
n→1

Dl~$0̂%!. ~11!

Next, we assume thatDl($0̂%) contains liquid propagators o
several colorsa,b,•••. Then the sum over the realization
of this generic type is given by

(
a51

n

(
b(Þa)51

n

•••Dl~$0̂%!5n~n21!•••Dl~$0̂%!, ~12!

i.e., it vanishes forn→1.
9-3
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HANS-KARL JANSSEN AND OLAF STENULL PHYSICAL REVIEW E64 026119
Now we turn toD2(K̂) and assume that all featured liqu
propagators are of the same color,a for sake. Since this
color is distinguished, it is convenient to isolate it by setti
K̂5K̂a1ê(a)k(a) with K̂a5K̂2ê(a)k(a). Then D2(K̂) has
the expansionD2(K̂)5D2(0̂)1D0K̂a

21D1k(a)21•••. It is
important to realize that the expansion coefficientsD . . . are
independent of the choice of the color. Thus, the summa
over all realizations of the generic type represented
D2(K̂) gives

(
a51

n

D2~K̂ ! →
n→1

D2~ 0̂!1D1K̂21•••, ~13!

where we have exploited that(aK̂a
25(n21)K̂2 vanishes for

n→1. The case of several colorsa,b,••• can be analyzed a
above by isolating the distinguished colors.D2(K̂) has the
expansionD2(K̂)5D2(0̂)1D0K̂a,b, . . .

2 1D1k(a)21D2k(b)2

1••• with K̂a,b, . . .5K̂2ê(a)k(a)2ê(b)k(b)2•••. Then it is
straightforward to check that

(
a51

n

(
b(Þa)51

n

•••D2~K̂ !}~n21!, ~14!

i.e., the contribution of the two-leg diagrams featuring liqu
propagators of several colors vanishes forn→1.

To analyze the single color diagrams further, we wr
G( k̂) in Schwinger parametrization,G( k̂)5*0

`dte2(t1 k̂2)t.

Suppose thatD2(K̂) comprisesP propagators,Pam being
amorphous andPliq being liquid with colora. Assume that
the diagram hasL loops, i.e., we have to integrate overL

independent combinations$q̂i%8 of internal wave vectors

$q̂1, . . . ,q̂P%. This integration is of the form

E
$q̂i %8

expH 2 (
i PPam

t i Q̂a,i
2 2(

i PP
t iqi

(a)2J
5@F~$t%Pam!#n21 exp$2C~$t%Pam!K̂a

2%

3A~$t%!exp$2B~$t%!k(a)2%, ~15!

whereQ̂a,i5Q̂i2ê(a)q(a). $t%Pam denotes the subset of th
$t1, . . . ,tP% belonging to the amorphous propagators.
comparing Eqs.~13! and ~15! in the limit n→1 we see that
D2(0) results from the integral*d$t%A($t%)exp(2t(iti) and
D1 from *d$t%A($t%)B($t%)exp(2t(iti). We conclude from
Eq. ~15! that these parts can be extracted directly by rep
ing all amorphous and liquid propagators by element
propagators of the type (t1q2)21. Moreover, we can sim-
plify K̂2 to k2 once the wave-vector integration has be
carried out. An analogous, yet simpler, reasoning applie
D3($0%) containing a single colora. The case thatD2(K̂)
andD3($0%) contain solely amorphous propagators, i.e.,
colors at all, can be analyzed in a similar fashion.

The quintessence of our considerations is that primit
divergences stemming from diagrams with multiple colo
drop out in the limitn→0. Hence, it is sufficient for calcu
02611
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lating the critical exponents of the VT to work with an arb
trary single color. Further, after the decomposition into am
phous diagrams all the propagators can be identified w
elementary propagators of the type (t1q2)21. We will see
in the following that the perturbation series resulting fro
this effective decomposition coincides with the diagramma
expansion of the field theory of RRN based on the Ham
tonianHRRN in the limits D,w→0.

The cubic interaction term inHRRN leads to the three-leg
vertexg. The principal propagator for the RRN is given b

Gbold~k,lW !5G~k,lW !$12dlW ,0W%, ~16!

where G(k,lW )5(t1k21wlW 2)21. Due to the factor$1
2dlW ,0W%, which enforces the constraintlW Þ0W , the principal
propagator decomposes in a conducting partGcond(k,lW )
5G(k,lW ) carrying replica currents and an insulating pa
Gins(k)5G(k,lW )dlW ,0W not carrying replica currents. Eac
principal diagram decomposes into a sum of conducting d
grams consisting of conducting and insulating propagat
As soon as this decomposition is accomplished it is safe
switch to continuous replica currents.

Now it is important to realize the one-to-one correspo
dence between conducting and amorphous propagator
well as the one-to-one correspondence between insula
propagators and liquid propagators forn→1. As far as
primitive divergencies are concerned, these one-to-one
respondences lead identical diagrammatic expansions~in-
cluding the combinatorial forefactors of the diagrams! for the
VT and the RRN up to apparent distinctions in the propa
tors. Due to these distinctions a diagramD2(k,lW ) analogous
to D2(K̂) ~with Pcond>Pam) involves instead of Eq.~15! the
integrations

E
$qi ,kW i %8

expH 2w (
i PPcond

t ikW i
22(

i PP
t iqi

2J
5@F~$wt%Pcond!#D exp$2C~$t%Pcond!wlW 2%

3A~$t%!exp$2B~$t%!k2%, ~17!

with the same functionsA,B,C,F as in Eq.~15!. Equation
~17! leads forD→0 to

D2~k,lW ! →
D→0

D2~0!1D0wlW 21D1k21•••, ~18!

where the divergent coefficientsD2(0) andD1 are identical
to those appearing in Eq.~13!. Here in the RRN, however, a
further divergent coefficientD0 arises. Thus, the renorma
ization scheme

w→w° 5Z1/2w, g2→g° 25A«Z23Zuum«,
~19!

w→w° 5Z21Zww, t→t°5t°c1Z21Ztt

involves a further renormalization factorZw . The other fac-
tors, Z,Zt ,Zu , are identical to those in the renormalizatio
9-4
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RELEVANCE OF PERCOLATION THEORY TO THE . . . PHYSICAL REVIEW E 64 026119
scheme~9! because the superficially divergent parts of t
two diagrammatic expansions coincide to any order forw
→0. This leads to the conclusion that the renormalizat
factors appearing in the renormalization scheme for the
are identical to those for percolation.

Due to the independence of the unrenormalized theor
the arbitrary length scalem21 introduced by renormalization
the correlation functions

G° N
(VT)~$ r̂ %,t° ,g° !5^V° ~ r̂ 1!•••V° ~ r̂ N!&HVT

~20!

of the VT order parameter satisfy the identity

m
]

]m
G° N

(VT)50. ~21!

This identity translates with the help of the renormalizati
scheme~9! via the Gell-Mann–Low–Wilson functions

b~u!5m
]u

]m U
0

,

k~u!5m
] ln t

]m U
0

,

g~u!5m
] ln Z

]m U
0

, ~22!

where the bare quantities are kept fixed while taking
derivatives, into the RGE

Fm ]

]m
1b

]

]u
1kt

]

]t
1

N

2
gGGN

(VT)~$ r̂ %,t,u,m!50.

~23!

Since the functionsb,k,g are entirely determined by th
renormalization factors, in particular by theY . . .

(1) (u), the
RGE ~23! is exactly equal to the RGE for the correlatio
functions of percolation theory. The RGE determines
scaling structure of a field theory. Thus, the VT has the sa
critical exponents as percolation,

n5@22k~u* !#21, h5g~u* !, ~24!

where u* is the infrared stable fixed point determined
b(u* )50. The percolation exponents are known to th
order« @11#. Introducing the correlation lengthj;utu2n and
the order-parameter exponentb5n(d221h)/2, the
asymptotic solution of the RGE~23! can be written as

GN
(VT)~$ r̂ %,t!5j2Nb/nFN

(VT)~$ r̂ /j%!. ~25!

The RRN differs from percolation as long as the bo
resistancew is finite. The bond-resistance constitutes a f
ther scaling variable and leads to an additional deriva
zw]/]w, wherez(u)5m(] ln w)/(]m)u0, in the correspond-
ing RGE @6#. Defining the resistance crossover exponent
f5n@22z(u* )#, the asymptotic solution for the correlatio
functions of RRN can be written as
02611
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GN
(RRN)~$x,uW %,t,w!5j2Nb/nFN

(RRN)~$x/j,uW /Awjf/n%!.
~26!

Although the VT and percolation are showing the sa
scaling behavior, the universal scaling functionsFN

(VT) and
limw→0 FN

(RRN) are in general different for both theories. Th
is due to the fact that these functions are not entirely de
mined by the superficially divergent parts of the correspo
ing vertex functions. The universal scaling functions can
be calculated from the RGE.

IV. ORDER PARAMETERS

To illustrate the distinctions between VT and percolati
we now revisit the order parameters. We start with the or
parameter for the RRN, Eq.~6!. Above the percolation poin
we deduce from Eq.~26! and the constraint~4! that

M (RRN)~uW ,t,w!5^w~x,uW !&HRRN

5P`~t!H E
0

`

dxp(RRN)~x!

3expS 2x
uW 2

wjf/nD 21J . ~27!

Here P`(t);utub is the percolation probability and
wjf/np(RRN)(wjf/nS`) is the probability distribution of the
conductanceS`51/R` from an arbitrary point on the perco
lating cluster to infinity. The digit 1 in the bracket denot
the limit of 1/n5(2M )2D for D→0. In the n-state Potts
model limit w→0, we retrieve from Eq.~27! the Potts order-
parameterM (Potts)(uW ,t)5P`(t)(duW ,0W21).

The order parameter for the VT has an analogous fo
@1–3#

M (VT)~ r̂ ,t!5^V~ r̂ !&HVT

5P`~t!H E
0

`

dxp(VT)~x!expS 2x
R2

j2 D 21J ,

~28!

whereR25(a51
n (r (a)2 r̃ )2 corresponds to the radius of gy

ration of the replicas about a center of mass atr̃
51/n(a51

n r (a). j2p(VT)(j2s) is the probability distribution
of the inverse squaress of the localization lengths. Here, th
digit 1 in the bracket denotes the limit ofV2(n21) for n
→1. Equation~28! demonstrates exemplarily that the scali
functions in vulcanization and percolation are in general d
ferent. We annotate that if all the monomers are sharply
calized at their average positions, Eq.~28! reduces to
M (VT)( r̂ ,t)5P`(t)(dR,021) resembling the form of the
Potts order parameter.

The universal distributionsp(VT)(x) and p(RRN)(x) may
be distinct. A mean-field calculation, however, leads in bo
cases~for the RRN, see Appendix B! to P`(t)52utu/g and
to the same integro-differential equation@1–3#
9-5
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4
d

dx
„x2p~x!…5p~x!2E

0

x

dx8p~x2x8!p~x8!, ~29!

with p(0)5p(`)50. It is interesting that the Laplace tran
form p̃(z)5*0

`dxp(x)exp(2zx) and the differential equation
that follows from Eq.~29!,

4zp̃9~z!5„12 p̃~z!…p̃~z!, ~30!

with p̃(0)51 and p̃(`)50, was already introduced man
years ago by Stephen@7# and Stinchcombe@12# in their
mean-field theory of RRN and determination of the cond
tivity of a Bethe lattice, respectively.

V. CONCLUDING REMARKS

We showed that the primitive divergences occurring
percolation and vulcanization are identical to arbitrary or
in perturbation theory. Consequently, both transitions
governed by the same Gell-Mann–Low RGE. This RGE
termines entirely the scaling structure of both transitio
Hence, the scaling behavior of physically analogous qua
ties in both transitions is identical. In particular, the VT
governed by the critical exponents of the percolation univ
sality class. Quantities that are not completely determined
superficial divergences cannot be calculated from the G
Mann–Low RGE. These quantities, e.g., scaling functio
are in general different in both theories.

Moreover, we compared the order parameter for the R
and the VT. These two have an analogous form that co
prises the percolation order parameter. However, the phys
content of the RRN and the VT order parameters is ric
than that of their analog for purely geometrical percolatio
The order parameter for the RRN involves a scaling funct
that incorporates the distribution of the conductance to in
ity whereas the order parameter for the VT features the
tribution of the inverse squares of localization length.
mean-field approximation, the corresponding distribut
functions turn out to be identical. To determine these dis
bution functions beyond mean-field level is an interest
issue for future work.

We would like to emphasize that the analysis of scal
properties presented in Sec. III is hardly feasible witho
employing the methods of renormalized local field theo
These methods provide a clear-cut discrimination betw
scaling properties and other universal quantities like sca
functions. Furthermore, these methods allow to restrict at
tion to superficially divergent diagrams which simplifies t
analysis tremendously.

The intimate relationship between vulcanization and p
colation seems plausible because macroscopic connec
is the central issue in both systems. There are, on the o
hand, striking distinctions between vulcanization and per
lation. For example, common percolation models like
RRN live on some underlying lattice whereas vulcanizat
involves no lattice. Vulcanization as considered in this pa
features an excluded volume interaction which is extrane
to percolation. A similarity between the excluded volum
interaction and the lattice is, however, that both prevent ov
02611
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lap of the network constituents, monomers and bonds,
spectively. Another obvious distinction is that the usual p
colation involves a single ensemble,viz. the ensemble of the
diluted lattice configurations, whereas vulcanization featu
two ensembles: one pertaining to the thermal degrees of f
dom and one to the crosslink distribution. It turns o
though, that fluctuations of the crosslink distribution play
more important role than thermal fluctuations do, at leas
far as the connectivity aspects of the VT are concerned.
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APPENDIX A: REDUCTION OF SUPERFICIALLY
DIVERGENT DIAGRAMS

In this appendix, we demonstrate the simplicity of det
mining the one-loop contributions to the renormalization
the VT model. Consider the self-energy diagram construc
of the HRS~bold! propagators, Fig. 1.

After decomposition in amorphous~thin! and liquid
~dashed! propagators, we get the second line in Fig. 1, wh
summation over the colorsa,b is implied. We have shown
that diagrams with different colors do not contribute to t
primitive divergencies. Hence, we can seta5b in the third
diagram. However, then the third diagram can be discar
because the wave vectors of the two propagators of the s
color cannot add to a HRS external wave vector at the v
tices. Now we can replace all the propagators by the sim
one (t1qi

2)21 that results in the simple diagram appeari
in the third line of Fig. 1. Therefore, we get in dimension
regularization, after including the combinatorial factor 1
the following one-loop contributionG2

12 loop to the two-leg
vertex functionG2 ~note that the vertex functionsGN are
defined as the negative of the corresponding diagrams!:

G2
12 loop~k!5

g2

2 E
q

1

~t1q2!@t1~q1k!2#

52
g2t2«/2

A«« F t

12«/2
1

k2

6
1O~k4!G , ~A1!

FIG. 1. Reduction of the one-loop self-energy diagram.
9-6
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where«562d and A«5(4p)d/2/G(11«/2). Renormaliza-

tion, Eq. ~9!, with GN→G° N5Z2N/2GN and the identification
k25K̂2 leads to the one-loop result

G2~K̂,t!5FZt2
u

«~12«/2!
~m2/t!«/2Gt

1FZ2
u

6«
~m2/t!«/2G K̂21O~u2,K̂4!. ~A2!

The « poles are eliminated by choosing minimally

Z511
u

6«
1O~u2!, Zt511

u

«
1O~u2!. ~A3!

Now we consider the first order correctionG3
12 loop to the

vertex functionG3. The three-leg diagram constructed of t
bold propagators, Fig. 2, decomposes in the amorphous
grams shown in the second line of Fig. 2. Once more
summation over the colorsa, b, andg is implied. We can
seta5b5g in the diagrams to extract the primitive dive
gencies. However, then the third and fourth diagram can
discarded because the wave vectors of the propagators o
same color cannot add to a HRS external wave vector a
the vertices. What is left is the third line of Fig. 2 where t
propagators are replaced by (t1qi

2)21. Thus, we find

G3($0‰!52g3E
q

1

~t1q2!3
5

2g3t2«/2

A««
. ~A4!

After renormalization we get

G3
12 loop~$0%,t!52gFZu

1/22
2u

«
~m2/t!«/21O~u2!G .

~A5!

It follows the remaining renormalization factor

Zu511
4u

«
1O~u2!. ~A6!

All the renormalization factors, Eqs.~A3,A6! are known
since a long time as the factors that renormalize the P
model in the one state limit@11#. Denoting the logarithmic

FIG. 2. Reduction of the one-loop vertex diagram.
02611
ia-
e

e
the
ll

ts

derivatives of the renormalization factors byg . . .
5m] ln Z . . . /]mu0, one derives easily the Gell-Mann–Low
Wilson functions of the RGE as

b~u!5~2«13g2gu!u5S 2«1
7

2
u1O~u2! Du,

~A7!

g~u!52
u

6
1O~u2!, ~A8!

k~u!5g2gt5
5u

6
1O~u2!. ~A9!

The fixed pointu* as the asymptotic solution of the flow
equation ldu( l )/dl5b(u) is found to be u* 52«/7
1O(«2). The critical exponents follow ash5g(u* )5
2«/211O(«2) and n21522k(u* )5225«/211O(«2).
These are the known percolation exponents.

APPENDIX B: THE ORDER PARAMETER OF THE RRN

In this appendix, we discuss some properties of the or
parameterM (uW ,t,w) of the random resistor network abov
the percolation point. We begin with a mean-field consid
ation based on the saddle point equation stemming from
~5!:

05
dHRRN

dw~x,uW !
5~t2¹22w¹u

2!w~x,uW !

2
g

2 S w~x,uW !22
1

nEuW 8
w~x,uW 8!2D . ~B1!

The last term in this equation follows from the condition th
the variation must be done subject to the constraint~4!. We
seek a spatially homogeneous solution, rotational invar
about uW 50 in replica space. Thus, we make the ans
w(x,uW )5M (uW )5m@ f (uW 2)21#. Here, f denotes a localized
function with *uW 8 f (uW 82)5*uW 815n. From Eq.~B1! we get,
assumingmÞ0 for t,0,

05~t2w¹u
2! f ~uW 2!2t2

gm

2 S f ~uW 2!222 f ~uW 2!12

2
1

nEuW 8
f ~uW 82!2D . ~B2!

We separate this equation in its localized and its delocali
parts:

~t2w¹u
2! f ~uW 2!2

gm

2
„f ~uW 2!222 f ~uW 2!…50, ~B3!
9-7
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t1
gm

2 S 22
1

nEuW 8
f ~uW 82!2D 50. ~B4!

Now we write the functionf as a Laplace integral

f ~uW 2!5E
0

`

dtp̄~ t !exp~2tuW 2!. ~B5!

Then we have for the term containing the replica space
rivative

¹u
2f ~uW 2!5E

0

`

dtp̄~ t !~4t2uW 222tD !exp~2tuW 2!

5E
0

`

dt4 exp~2tuW 2!
d

dt
„t2p̄~ t !…, ~B6!

where the last equality holds in the limitD→0, i.e.,n→1.
Furthermore we can deduce in this limit from the normaliz
tion of f that *0

`dtp̄(t)51, which leads in the limitn→1 to

*uW f (uW 2)25@*uW f (uW 2)#251. Thus, we obtain from Eq.~B4!
that the mean-field percolation order parameter is given
t,0 by m522t/g52utu/g. Using this result and equatin
the coefficients of exp(2tuW2), we get finally from Eq.~B3!

4w

utu
d

dt
„t2p̄~ t !…5 p̄~ t !2E

0

t

dt8p̄~ t8! p̄~ t2t8!, ~B7!

which constitutes, after a rescaling, the integro-differen
equation~29!. A very good approximative solution of thi
equation is given byp(x)5ax22 exp(21/4x) for x!1 and
p(x)524(bx23/5)exp(2bx) for x@1 with a50.569 25 and
b513.424@1#. These asymptotic forms yield also very goo
approximations in the overlapping regionx'1.

The previous mean-field consideration is valid in an ex
sense only for dimensionsd>6. To get information abou
the behavior of the distributionp(x) on the spatial dimension
E

s,

r-

,
.

02611
e-
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d below six, we calculate the mean macroscopic conducta
to infinity S` . We consider spatial length scales large
comparison to the correlation lengthj. In this regime the
RRN above the percolation point,t,0, can be considered a
a homogeneous material of conductivitys(t). Instead of
addressingS` directly, we determine the resistanceRL of the
RRN between in inner sphere of radiusa@j and an outer
one of radiusL@a. The solution to this simple problem ma
be gleaned from many textbooks on electricity and mag
tism. One finds that the voltageV behaves as a function o
the currentI as

V5
I

s~d22!Sd
S 1

ad22
2

1

Ld22D 5RLI , ~B8!

whereSd is the surface of the unit sphere ind dimensions.
S` can now be obtained by taking the limitL→`. The
leading terms in this limit are

SL5RL
21'sSdH ~d22!ad22 for d.2,

@ ln~L/a!#21 for d52,

~22d!L2(22d) for d,2.

~B9!

Hence, the macroscopic conductance to infinityS` is finite
in the case ofd.2 and vanishes ford<2. We conclude that
the distribution of the conductance to infinityp(x) must de-
velop ad peak atx50 if d<2 and the order parameter o
the RRN vanishes. If we make a scaling ansatz

SL~t!5utuwF~L/j,a/j!, ~B10!

and compare with Eq.~B9!, we find the well-known expo-
nent t for the macroscopic conductivitys(t)5utu t

t5~d22!n1w ~B11!

in all cases.
,
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